
Lifecycle and Event-Based Testing
for Android Applications

Simone Graziussi, Konstantin Rubinov, Luciano Baresi

Contact: konstantin.rubinov@polimi.it

Mobile apps are characterized by a great number
of events, such as lifecycle events, sensor data,
connectivity changes, user input, network
responses, etc. These events can happen in many
different orders and frequencies

Lifecycle management and event concurrency
challenges have been largely overlooked to date
in mobile app testing

Static analysis to recognize possible misuses
of components, and a dynamic technique to
test app robustness controlling the critical
lifecycle transitions.

Assertion language to check for race
conditions and assess existence, ordering and
quantification of the events generated during
the application execution

Problem & Status Solution

Static and dynamic checking & temporal assertions language
Static analysis:
detect issues in handling of
components/resources in
accordance to the host Activity/
Fragment lifecycle

Avoid unexpected behaviors or
resource waste. Detect early in SW
Dev process

Temporal assertions language:
specify event-related conditions/
consistency checks for standard unit,
integration or UI tests

Dynamic checking with lifecycle
test cases:
pre-generated test cases that
explore the most common lifecycle
changes (e.g., simulate the
component being partially hidden)

Developer defines callbacks, while
the library manages lifecycle
transitions and error reporting

Implemented: pause, stop, rotation,
recreation, destruction

Static analysis is implemented on top of Android
Lint, integrates with Eclipse and Android Studio

Dynamic lifecycle testing library is standalone,
works with Espresso and Robolectric

Temporal assertion language is implemented in a
library on top of RxJava and RxAndroid

Source code and documentation available at:
https://github.com/Simone3/Thesis

public RotationCallback testRotation() {
 return new RotationCallback() {
 private String name;

 @Override
 public void beforeRotation() {
 onView(withId(R.id.first_name_row))
 .check(matches(isDisplayed()))
 .perform(click());

 name = "MyFirstName" + (new Random().nextInt(100));
 onView(withId(R.id.my_profile_dialog_input))
 .check(matches(isDisplayed()))
 .perform(replaceText(name));

 onView(withText("OK"))
 .perform(click());

 onView(withId(R.id.first_name))
 .check(matches(allOf(isDisplayed(), withText(name))));
 }

 @Override
 public void afterRotation() {
 onView(withId(R.id.first_name))
 .check(matches(allOf(isDisplayed(), withText(name))));
 }
 };}

Causality:

Implemented checks:
- Release (e.g., failing to release a
resource that was acquired)
- Best practices
- Double instantiation

BroadcastReceiver, Google API
client, Fused Location
Provider API, Camera, Ads View

Example rotation test case:

Express Existence, Order,
Causality, Quantification in
concise checkable language; use
connectives (logical, implication, etc.)
to express complex conditions

Order:

Existence:

Prototype
1. Static analysis: reproduced two real bugs in Android
apps InTheClear and TrackBuddy (full project analysis
20-40 seconds)

2. Dynamic lifecycle checking: reproduced three real
bugs in Wordpress for Android app

3. Temporal assertions language: defined six temporal
checks for Wordpress for Android app (difficult or
impossible to define using other means)
Fault seeding: three seeded faults detected.
(performance overhead less than 3%)

Preliminary results

