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Abstract—Binary analysis is a well-investigated area in soft-
ware engineering and security. Given real-world program bina-
ries, generating test inputs which cause the binaries to crash
is crucial. Generation of crashing inputs has many applications
including off-line analysis of software prior to deployment, or
online analysis of software patches as they are inserted. In this
work, we present a method for generating inputs which reach a
given “potentially crashing” location. Such potentially crashing
locations can be found by a separate static analysis (or by
gleaning crash reports submitted by internal / external users)
and serve as the input to our method. The test input generated
by our method serves as a witness of the crash. Our method
is particularly suited for binaries of programs which take in
complex structured inputs. Experiments on real-life applications
such as the Adobe Reader and the Windows Media Player
demonstrate that our Hercules tool built on selective symbolic
execution engine S2E can generate crashing inputs within few
hours, where symbolic approaches (as embodied by S2E) or
blackbox fuzzing approaches (as embodied by the commercial
tool PeachFuzzer) failed.

I. INTRODUCTION

Complex software systems are released and deployed with

faults. Some faults trigger application crashes that elevate

system security risks and are difficult to trace, analyze and

reproduce. The problem of finding crashing paths has been

addressed by previous research, however, few techniques cope

with large real-world binaries. Real-world binaries present

challenges for program analysis techniques due to their size,

complexity, and multitude and depths of execution paths. In

addition, the information about structure of programs in a

stripped binary is incomplete when collected statically, while

recovering such information dynamically is often infeasible.

Reproducing crashes in multi-module systems requires

targeted exploration. The search space of potential crashing

paths is too large to be exhaustively checked path by path

(for instance, using symbolic execution); the complexity of

program inputs is too high for exhaustive set of inputs to be

generated combinatorially or randomly (for instance, using

fuzzing). The space of program paths is intractable for modern

analysis techniques – a novel targeted exploration is needed.

Given a real-world program binary with a crash report, our

approach Hercules tackles the problem of finding program

paths and corresponding program inputs that cause a crash in a

given program location. The core idea behind our approach is

to systematically detect, bound and explore a subset of program

paths necessary and sufficient for reaching and triggering

a given program crash. The approach builds upon concolic

exploration and propagates a necessary, but minimal subset of

input data in symbolic form, while keeping the remaining input

data concrete. The exploration uses targeted search strategy

that helps to explore as few as possible paths, while resolving

enough information about program structure for finding the

crashing path.
Our approach works in three main steps (Figure 1). Each

step progressively more precisely establishes program and

input structures that are relevant to reproducing the crash.

The approach starts with a preprocessing step for initial

reconstruction of a program structure and selection of input

files (Step 1) followed by two passes of concolic exploration.

Application of two passes of concolic exploration is a distinct

feature of the approach. Each pass serves different purpose: the

first pass (Step 2) establishes a relationship between program

input and relevant program structures, and provides an input to

the second pass (Step 3) – a focussed fine-granularity search

for a crashing path. Our search strategy infers the reasons for

infeasibility of specific non-crashing paths, thus helping us to

avoid exploring large numbers of paths that are non-crashing

for the same reason, and to direct the search towards the paths

that will crash the system.
We call our tool and method as Hercules, largely because of

the Herculean task (of finding crashing inputs) it accomplishes

in a reasonable time-frame. This is because of smart search

heuristics and structuring of the search into phases. Our

approach builds upon selective symbolic execution technique

S2E [1], extends it, and makes a number of technical contribu-

tions, namely -

• Targeted search strategy implements our targeted search

algorithm that detects reasons for infeasibility of non-

crashing paths and directs concolic execution.

• Approximation of string functions scales concolic exe-

cution by bounding exploration of string manipulation

functions that generally cause path explosion.

• Analysis of loop-controlled crash instructions enables

automatic synthesis of loop-dependent crash conditions.

• Dynamic module selection adds flexibility to the S2E
technique – in the process of selective concolic execution

our technique allows dynamic selection of program

structures for concolic execution (state forking).

• Dynamic CFG refinement. In addition to the standard

S2E functionality our technique builds and dynamically

refines program control flow graph (CFG) and uses it for

reachability analysis to inform concolic exploration.
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Fig. 1. An overview of our approach and Hercules tool

Assumptions: The few significant assumptions we make

concern availability of a test suite (a set of non-crashing benign

input files) TestSuite and indication of a crash location CL

in a crashing module CrashingModule, where execution of at

least one test case in TestSuite reaches CrashingModule.

We optionally assume availability of a list of modules invoked

during crashing execution ModuleList, call stack and values

of the program registers at the moment of crash that form a

crash condition CC. If available, the knowledge about input file

structure and layout may aid seed file selection and generation

of hybrid symbolic inputs. The required information is external

to the approach and can be often produced by a separate

static/dynamic analysis.

II. OVERVIEW

We illustrate the pertinent aspects of the approach using

data from a vulnerability CVE-2010-0718 in Windows Media

Player – a buffer-overflow that triggers a system crash in

a divide-by-zero exception. Figure 2 shows fragments of

information used by our approach in the search for crashing

input. According to the crash report, the list of modules involved

in crashing behavior contains quartz.dll, wmp.dll and a main

module wmplayer.exe (out of total 84 modules loaded by

the program).1 The module quartz.dll crashes at the program

location 0x74902224, instruction ‘div ecx‘. A set of benign

inputs does not reach this location.

In Step 1 of the approach we reconstruct the structure of a

system with static analysis and dynamically, by exploring the

system with benign input files. The result of this step is an

incomplete program structure incorporating module dependence

and control flow information. Step 1 also selects benign

inputs that trigger execution in the modules involved in the

crash. For CVE-2010-0718, Step 1 identifies a benign input

that reaches the crashing module at an entry point (internal

function 0x74834010), but does not reach the crash location.

A fragment of the benign file is shown in Figure 2.

In Step 2, we use concolic exploration as an apparatus

for precise taint tracking and identifying input fragments

relevant to reaching the crashing module. From these data

we generate hybrid symbolic inputs that maintain correct input

1We refer to a module to denote an executable file (main module) and
any library it loads, while for the entry points of a module we consider both
exported and internal functions.

Entry Point 0x74834010

...
(Eq (w32 0x46464952)
  (Concat w32 (Read w8 0x0 v3_sym_byte_3)
    (Concat w24 (Read w8 0x0 v2_sym_byte_2)
      (Concat w16 (Read w8 0x0 v1_sym_byte_1)             
(Read w8 0x0 v0_sym_byte_0)))))
Constraint (Eq false
  (Eq (w32 0x44494d52)
    (Concat w32 (Read w8 0x0 v11_sym_byte_11)
       (Concat w24 (Read w8 0x0 v10_sym_byte_10)
         (Concat w16 (Read w8 0x0 v9_sym_byte_9)         
(Read w8 0x0 v8_sym_byte_8))))))
...

RetAddr   Module
7490232d  quartz+0xf2224
74901d96  quartz+0xf232d
...       ...
748340a2  quartz!DllGetClassObject+0x404c
7483df85  quartz!DllGetClassObject+0xa36 
...       ...
4b70c27a  wmp!Ordinal3000+0x19284
4b70c225  wmp!Ordinal3000+0xa677d
7c80b713  wmp!Ordinal3000+0xa6728

Call stack

Path constraint at 0x74834010

Input file

Crashing module -- quartz.dll

...

.text:74834010 lpCriticalSection= dword ptr  8

.text:74834010 arg_4           = dword ptr  0Ch

.text:74834010 arg_8           = dword ptr  10h

.text:74834010                 mov     edi, edi

.text:74834012                 push    ebp

.text:74834013                 mov     ebp, esp

...

Entry Point 0x7490220A
...
.text:7490221D           shr     ebx, 1
.text:7490221F           add     eax, ebx
.text:74902221           adc     edx, 0
.text:74902224           div     ecx
.text:74902226           shld    edx, eax, 10h
.text:7490222A           pop     ebx
.text:7490222B           pop     ebp
...

  eax=00000000 ebx=00000000 ecx=00000000 
  edx=00000000 esi=00138078 edi=00000001
  eip=74902224 esp=0167f6c0 ebp=0167f6c4 
  iopl=0         nv up ei pl zr na po nc
  cs=001b  ss=0023  ds=0023  es=0023  
  fs=003b  gs=0000  efl=00000246

Register dump

...
4D 54 68 64 00 00 00 06 00 01 00 0B 00 F0 4D 54   MThd.........ðMT
72 6B 00 00 00 13 00 FF 58 04 04 02 18 08 00 FF   rk.....ÿX......ÿ
...

4D 54 4D 54 4D 54 4D 544D 54 68 6468 6468 6468 6468 6444444   
72 6B72 6B72 6B 00 0000 0000 007
4D 54 68 64 00 01 00 01 00 01 00 0100 01 00 0B00 0B00 0B00 0B00 0B 

58 048 0458 04 04 0204 0204 02
00 01 00 0B MThdMThdMThdMThdMThd

kkk
MThd ................. crash conditiontaint sources

modules to analyze

taint info
crash location

entry close to crash

Fig. 2. Crash analysis information for CVE-2010-0718

file structure.2 For CVE-2010-0718, Step 2 collects a path

constraint with a symbolic version of the benign input. The

path constraint indicates symbolic bytes from the input file that

are propagated to the module entry point 0x74834010 (arrows

between the path constraint and the input file in Figure 2).

These input portions are relevant to reaching crashing module

and we mark them symbolic in a hybrid symbolic file.

Generation of hybrid symbolic inputs addresses two main

issues in symbolic execution for real-world program binaries.

First, hybrid symbolic inputs prompt less constraint solving in

concolic exploration and result in smaller symbolic formulae.

Second, exploration with structurally correct hybrid inputs

has higher chances of bypassing the parser component that

incorporates multitude of conditions that cause state explosion

in symbolic execution and prevent it from reaching deep

program paths.

In Step 3, we apply a targeted search strategy (second pass

of concolic execution) to explore the system in a directed

fashion systematically eliminating groups of paths from analysis

and generate crashing input. The strategy stems from the

observation that groups of non-crashing paths often have the

same cause for which they do not crash the system. The main
intuition behind our strategy is that we can detect a reason of

infeasibility of a certain path and eliminate from consideration

in concolic execution groups of paths that do not crash for

2We refer to hybrid symbolic inputs as files containing fragments of symbolic
and concrete data, in contrast with fully symbolic files that contain only
symbolic data.
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the same reason. A contrived example of a shared cause for

non-crashing paths is shown in Figure 3. Paths through nodes

highlighted in yellow (horizontal bars) cannot crash the system

because they are guarded by the condition (x>0) that does

not satisfy the crashing condition (x<0 ∧ y!=0).

To detect the reason of infeasibility of non-crashing paths,

we conjoin the path constraint φ for a path that reaches

crashing module with the symbolic summary Σ of a crashing

module with respect to crash location. Intuitively, terms in path

constraint φ that contradict terms in symbolic summary Σ are

the reasons of infeasibility of a complete path from program

entry point to the crash location (term (x>0) in path constraint

PC in Figure 3).

Practically, the conjoining of φ and Σ amounts to two

steps. First, to check the satisfiability of formula φ ∧ Σ. And

second, if the formula is not satisfiable (the path does not crash

the system), to extract a minimal unsat_core that contains

contradicting terms T . The contradicting terms correspond to

the causes of the infeasibility of a given non-crashing path.

Our search algorithm keeps track of each term in path

constraint formula and corresponding program location the

term is being introduced. Consequently, a contradicting term

indicates a point on a program execution path to which our

search algorithm proceeds to pursue alternative paths and avoids

executing paths that do not crash for the same identified reason.

Crash reports often contain the values of program registers at

the moment of crash (register dump in Figure 2). A constraint

on these values is a crash condition. In case crash condition is

available, we can detect the reasons of infeasibility of a path

with respect to specific crash condition CC in the same way

as described above, by extracting terms in unsat_core from

an unsatisfiable formula φ ∧ Σ ∧ CC.

Depending on a type of a crash, crash conditions are

easier or more difficult to extract. For instance, crash due

to division by zero could appear in crash report as instruction

‘div ecx‘, where the value of ecx=00000000 as shown in

Figure 2. Consequently crash condition is (ecx==0). Some

crash conditions can be less evident and require additional

effort for being captured as we discuss in Section V-A.

III. PREPROCESSING AND HYBRID SYMBOLIC INPUTS

The first two steps of our approach prepare information

for the third step – a targeted search for a crashing path

(Section IV). In particular, the first step resolves incomplete

information about program binaries, while the second step gen-

erates a structurally correct hybrid symbolic input (Figure 1).

Step 1: Recovering program structure and selecting seed files

We statically analyze the system with IDA Pro toolset3

(https://www.hex-rays.com/idapro/) and use analysis results

to obtain a program control flow graph (CFG) and module

dependence graph (MDG) that we dynamically refine in the

next steps of the approach. The main sources of incompleteness

in program binaries are register indirect jumps and calls, and

concealed library entry points (non-exported functions). We

process the output of IDA Pro and statically resolve jump

targets for switch statements, detect function boundaries and

statically imported entry-exit points for the modules in a list

of modules involved in a crash.

We execute the system with benign input files to augment

the statically collected information with dynamically imported

entry and exit points of the modules of the system, concrete

targets for branches dependent on indirect register jumps, and

resolved register indirect call targets. A resulting aggregated

inter-procedural control flow graph connects different modules

of the system along the discovered module entry-exit points.

We select seed files from a test suite according to their

relevance to the crash and the modules involved in the crashing

behavior. The main criteria for file selection are traces of system

executions with test files and file structure information. File

structure information indicates which objects in the file are

required to exercise certain functionality of the system. We

aggregate the traces of system execution with the preselected

test files and obtain a histogram for selecting files that most

extensively use modules from ModuleList. We use the

selected seed files in the next steps of the approach as the most

relevant to the crashing behavior.

Step 2: Generating hybrid symbolic inputs

We use concolic execution to detect fragments of inputs that

are relevant to reaching the crashing module – input fragments

that propagate data into the crashing module. Taint tracking

using concolic execution precisely associates the fragments

of program inputs and affected program locations. It is more

accurate than “vanilla” taint analysis that traces program paths

affected by program inputs, however does not establish which

parts of the input are propagated to which program locations.

3IDA is a state-of-the-art multi-processor disassembler and debugger
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In concolic execution we apply random exploration strategy

– upon branching, the next path to explore is selected randomly,

with an exception that paths generated by string functions are

selected from groups of paths as detailed in Section V-B. We

automatically generate fully symbolic versions of seed files

identified in the previous step of the approach and we trace the

propagation of symbolic data from these files during concolic

execution; execution stops when it reaches CrashingModule.

Given a path that reaches crashing module, a path constraint

contains symbolic input bytes (taint sources) relevant for

reaching this module. Together with the knowledge of input

file structure, this information serves to automatically generate

hybrid concolic input file that maintains the original file layout.

We prevent random exploration from “drifting” outside

modules in ModuleList and dynamically refine CFG of the

system extending it with information from concolic exploration.

Concolic exploration discovers new paths if it produces new

concrete data to take these paths. In particular, if concolic ex-

ecutor reaches register-indirect jump instruction ‘jmp [eax]‘

with a new concrete value in eax, then it may explore a new

path spanning from a new jump target. A maximum number

of resolved indirect jumps and calls is thus proportional to

the number of new paths we can explore with the concolic

data. To prepare CFG for the targeted search, we prune it

with respect to crash location in crashing module and with

respect to exit points that connect modules in ModuleList.

A schematic module dependence graph with pruned paths is

shown in Figure 3, where pruned paths are marked with X.

IV. TARGETED SEARCH

In the third step of the approach we apply targeted concolic

execution to find crashing paths – program paths that crash

the system in CrashingModule. The targeted exploration

works on a pruned version of CFG and hybrid concolic inputs

generated in the previous step of our approach. The three

phases of the exploration are: (1) replay, (2) summarization,

and a main phase – (3) targeted search. Figure 4 illustrates

transitions between these phases schematically.

The targeted exploration starts by deterministically replaying

one of the observed paths to the crashing module with hybrid

concolic input (replay). Consecutive symbolic exploration sym-

bolically summarizes the crashing module from module entry

point to the crashing location using symbolic data propagated to

the module from the program input (summarization). Finally, a

targeted search phase selects and traverses alternative program

paths in search for crashing paths.

Targeted search phase evaluates the feasibility of a given

path with respect to the crashing module summary and detects

the reasons of infeasibility of the non-crashing path as terms

in the unsat_core of the conjunction of the path constraint

and module summary. The algorithm uses the program states

that introduced the infeasibility reasons as anchors to select

alternative states to which to proceed. As a result, the search is

directed away from groups of infeasible paths. Search proceeds

Replay phase

Target. search

Summarization

Alt. location

start

Replay Summary
Target. 
search

end

start

Crashing module !

A1
A2

s1
s2

s3
s4

Fig. 4. Phases of targeted exploration

until it finds a feasible crashing path or terminates after a

user-specified timeout or upon exhausting the memory.

Algorithm 1 outlines the key elements of each of the phases.

The search algorithm is general and can be implemented on top

of any dynamic symbolic executor. We illustrate the algorithm

for a generic language with instructions identified by their loca-

tion l. For simplicity we distinguish two types of instructions:

(1) branches identified by branch(l) predicate with branch

condition cond(l), and (2) non-conditional instructions. The

target location of a branch instruction is identified by target(l),
while for all instructions the next location is next(l).

Program state s is represented by a triple (l, φ,m), where

l is a program location, φ is a path constraint, and m is a

symbolic store. Symbolic store maps program variables to

concrete values or expressions over input variables. The initial

program state is (l0, true,m), where l0 is a program entry

point, path constraint is set to true, and m is initialized with

symbolic variables for each program input variable.

A. Replay

Targeted exploration replays the path to one of the crashing

module entry points e ∈ E. Given a set of states Se (list

of states for reaching e from l0), the replay is a concolic

exploration where upon branching the states for execution

are selected from Se (line 8). During replay the searcher

takes snapshots of the alternative states and stores them in

a map μ with constraints introduced in the executed state

condition(s) (line 9). Figure 4 schematically shows state s1

and its alternative state s2 that the algorithm stores in the map

μ. Replay terminates after traversing all the states in Se in a

state reaching entry point e of the crashing module.

Note that in our implementation of the algorithm, Se list is

lightweight. It does not store the complete state representation

as used by S2E, but only the forking program locations.

B. Summarizing crashing module symbolically

Upon reaching entry point of the crashing module, the algo-

rithm commences symbolic summarization (line 11, lines 28–

43). The summary is an aggregate of path constraints for
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Algorithm 1 Targeted search

Input: l0 – initial location; χ – crash location; E – list of module entry
points; Se – list of states for reaching e ∈ E from l0;

// REPLAY PHASE:
1: s ← (l0, true,m) � Initialize current state
2: while Se �= ∅ do
3: if ¬branch(l) then s ← (next(l), φ,m〈v, e〉)
4: if branch(l) then
5: if (SAT(cond(l) ∧ φ) ∧ SAT(¬cond(l) ∧ φ)) then
6: s1 ← (next(l), cond(l) ∧ φ,m)
7: s2 ← (target(l),¬cond(l) ∧ φ,m)

8: s ← {s1, s2} ∩ Se � Pick next state from Se

9: μ ← μ〈condition(s), ({s1, s2} \ s)〉 � Snapshot

10: Se ← Se \ s

11: Σ ← SYMBSUMMARY(s) � Location of the last state in Se is e
// MAIN PHASE:

12: X ← ∅
13: while ¬SAT(φ ∧ Σ) do
14: τ ← UNSAT CORE(φ ∧ Σ)
15: t ← pickTerm(τ, μ) � Pick contradicting term using strategy
16: X ← X ∪ {t}
17: s ← μ[t] � Select alternative state
18: while l /∈ E do � Until reached any of entry points
19: if ¬branch(l) then s ← (next(l), φ,m〈v, e〉)
20: if branch(l) then
21: if (SAT(cond(l) ∧ φ) ∧ SAT(¬cond(l) ∧ φ)) then
22: s1 ← (next(l), cond(l) ∧ φ,m)
23: s2 ← (target(l),¬cond(l) ∧ φ,m)

24: s ← pickNextState(s1, s2)
25: μ ← μ〈condition(s), ({s1, s2} \ s)〉 � Snapshot

26: if l /∈ Echecked then Σ ← SYMBSUMMARY(s)

27: OUT ← (φ, X) � We can continue search by proceeding to the
remaining alternative states from line 15.

// SUMMARIZATION
28: procedure SYMBSUMMARY(s) � Explore paths from s to χ
29: Require: location(s) ∈ E
30: Echecked ← Echecked ∪ location(s)
31: s ← (l, true,m) � Reset path constraint
32: W ← {s} � Initialize worklist
33: while W �= ∅ ∨ timeout do
34: if ¬branch(l) then W ← W ∪ (next(l), ϕ,m〈v, e〉)
35: if branch(l) then
36: if (SAT(cond(l) ∧ ϕ) ∧ SAT(¬cond(l) ∧ ϕ)) then
37: W ← W ∪ (next(l), cond(l) ∧ ϕ, m)
38: W ← W ∪ (target(l), ¬cond(l) ∧ ϕ, m)

39: if l == χ then Σ ← Σ ∨ ϕ

40: W ← W \ s
41: s ← pickNextState(W )

42: Σ ← Σ ∧ CC � Add crash condition to the summary
43: return Σ

each path reaching crash location from the module entry point

using symbolic data that is propagated to the module entry

point. Symbolic store m holds the propagated symbolic data

as expression over symbolic program inputs. The summary

is independent of the path constraint φ used for reaching the

crashing module and the corresponding path constraint is reset

to true (line 31). A module summary Σ is a disjunction of

path constraints ϕi for each path reaching crashing location χ
from a given module entry point:

∨n
i=1 ϕi.

Summarization procedure uses the pruned CFG to inform

selection of the next states in symbolic exploration. States

extending outside CFG are not pursued as they do not

reach crashing location. This is implemented in procedure

pickNextState() that uses CFG to select successors for

branching instructions (line 41). This way the algorithm ensures

selection of states for paths that reach crashing location.

The symbolic summary collected with our approach may

be incomplete. Symbolic data in symbolic execution can be

injected only from the input of the system – it is not be

generated in the process of symbolic execution. Concolic

exploration may not reach the module with symbolic data

for all of its inputs, some of the inputs may be reached with

concrete data resulting in an incomplete summary.

Symbolic data may not reach the module for a number of

reasons. First, seed input files may be inadequate or deficient

with respect to the functionality of a crashing module, input file

may lack data structures that affect certain input of a crashing

module. Second, an input of the module may be independent

of the program input. And third, a symbolic input may be

concretized during concolic execution and propagated to the

module input as a concrete data.

Given a crash condition CC, a module summary Σ is

a precondition with respect to reaching crashing location,

where Σ(CrashingModule, CC) is a logical formula over

the module input which is true for all inputs that cause crashing

module to reach a final state satisfying CC. Since CFG of

crashing module is pruned, module final state is in the crashing

location χ. The algorithm extends module summary Σ with

crash condition CC in the last step of summarization (line 42).

The summary Σ concisely captures a precondition for reaching

crashing location.

C. Searching for a crashing path

Targeted search phase starts from the point when concolic

executor have reached the crashing module in the replay phase

and consequently collected symbolic summary Σ of the module

in the summarization phase. Targeted search phase identifies

program states that do not introduce infeasible constraints in

the paths reaching crashing module and directs exploration

through these states in the search for feasible crashing paths.

Provided that the initial path selected for reaching the

crashing module in the replay phase does not crash, the

conjunction of path constraint and symbolic summary φ ∧ Σ
is unsatisfiable. To detect the reasons of unsatisfiability the

algorithm queries SMT solver for minimal unsat_core that

contains a list of contradicting terms from both path constraint

φ and summary Σ. The algorithm extracts from unsat_core a

list of terms τ (line 14). These terms correspond to the reasons

for infeasibility that originate from the specific program states

on the path reaching crashing module. In the schematic example

in Figure 3 the cause for the path infeasibility is located by

the contradicting term (x>0) from the path constraint.

To continue the search for a crashing path, the algorithm

selects alternative program states that do not introduce the

identified infeasibility reasons. The algorithm selects alternative

states indicated by the list of contradicting terms τ using the

map of constraints and alternative state snapshots μ captured

during replay phase. In particular, a procedure pickTerm(τ, μ)
selects one term t from the list τ and this term is then used to

query the map μ to select the alternative state (lines 15–17).

895895



...
0x61161745  mov ecx, esi
0x61161747  call ebx

0x61161749  add esi, [ebp + arg4]
0x6116174c  dec edi
0x6116174d  jnz loop
...

...
0x61161146  mov eax, ecx
0x61161148  xor ecx, ecx

0x6116114a  fstp qword ptr ds:[eax+1]
...

crash instru
ction

Crash function
Call site (loop)

Fig. 5. Example of loop-dependent crash in Real Player

In pickTerm(τ, μ) we select a term introduced in the top-

most program location and a corresponding alternative state.

Such term represents a general reason for infeasibility of

multiple paths in a symbolic subtree and thus, when selected,

can dramatically reduce the search space. However, some of the

paths in that subtree may be feasible. For instance, in Figure 3,

a path that passes through a blue node (vertical bars) in the

CFG is feasible with respect to the crashing module summary.
Each iteration of the targeted exploration continues from

the selected alternative state until it reaches entry point of the

crashing module with a new path constraint φ. The search

algorithm can reach crashing module through an entry point

that it has not reached before (line 26). In this case the module

summary is recomputed to consider new paths to the crashing

location, if they are reachable from this entry point.
Algorithm 1 iterates until the formula φ ∧ Σ is satisfiable

and hence the crashing path is found. The output OUT of the

targeted search consists of a path constraint φ and a list of

contradicting terms X used for navigating the search. The path

constraint φ can be solved to generate a set of program inputs

that exercise a particular crashing path. The list of selected

contradicting terms X serves as an additional explanation for

the crashing path highlighting the data and deviation points

(A1 and A2 in Figure 4) that are crucial for pursuing it.

V. TACKLING LIMITATIONS OF CONCOLIC EXECUTION

A. Synthesizing crash conditions for loop-controlled crashes
To reproduce a crash our approach reaches a crash instruction

and, among other information, uses crash condition CC to

direct the targeted search and, ultimately, synthesize crashing

input. In practice, however, crash condition cannot be formu-

lated symbolically in terms of symbolic input of the program if

concolic executor reaches crashing instruction without symbolic

data in the operands of the instruction. Previous research

demonstrated that this situation can be alleviated for loop-

dependent variables [2].
Hercules solves this problem by inferring a function over

dependent variables (operands of crash instruction) on a number

of loop iterations. This allows us to express the CC at the

targeted crash instruction through another condition CC ′ at the

beginning of the controlling loop(s). Saxena et al. used abstract

interpretation and pattern matching to infer the function [2].

In Hercules, we infer the function using data fitting on

runtime values in registers and memory locations during loop

exploration [3]. A similar idea has been successfully applied

in the context of segmented symbolic analysis to discover

symbolic relationships between program variables [4].
Figure 5 shows an example of loop-controlled crash in-

struction in a crash module flvff.dll that causes a memory

access violation in Real Player due to an integer overflow

vulnerability (CVE-2010-3000). In this example, the crash

function is iteratively called in a loop and the crash instruction

at 0x6116114a attempts to store data to the targeted memory

address that is calculated using the value of eax register. If

the address is out of bounds, the crash will occur. Hence, the

CC in this example must be expressed through symbolic data

in eax as eax == eaxcrash, where the eaxcrash value comes

from the register dump in the crash report. However, symbolic

execution reaches the crash instruction with a concrete value

in eax preventing the approach from formulating a symbolic

crash condition.

We apply inter-procedural data flow analysis to establish

whether the crash instruction is loop-controlled and, if so,

to detect data dependencies between the operands of the

instruction and the variables within the loop. In the example,

we discover a data dependency between eax and ecx in

the crash function (‘mov eax, ecx‘ at 0x61161146) and

between ecx and esi in the call site (‘mov ecx, esi‘

at 0x61161745). Inside the loop, esi is incremented by a

concrete value (passed through a function argument) at each

iteration. The value of eax in crash instruction depends on the

value of esi register inside the loop and in turn, the value of

esi depends on the number of loop iterations.

Using data fitting, Hercules infers a relationship between

esi and a loop count it: esi = esi0 + it*0x23. In the

example, the number of loop iterations is controlled by the

value of register edi that holds symbolic data (instructions at

0x6116174c and 0x6116174d). In other words, the value of

eax in crash instruction is indirectly controlled by the symbolic

input data in edi.

As a result, we transform the concrete constraint CC on

eax at the crash instruction to a symbolic constraint CC ′ on

the value of edi before the start of the loop. With this data we

can synthesize crashing input by solving the formula φ′∧CC ′,
where φ′ is the path constraints to reach the loop.

B. Tackling path explosion

To avoid path explosion during concolic execution of real-

world binaries our approach tackles its most prevalent sources

– loops and string manipulation functions. To tackle path

explosion in loops we bound a number of loop iterations in

which concolic executor forks new feasible states. Beyond the

bound the executor does not fork new states in a loop. Recent

research shows that bounding loop iterations is a practical and

effective solution in the context of symbolic execution [5].

String manipulation functions are more difficult to tackle than

loops. In essence these functions are sophisticated loops over

string data that are modelled with bit-vectors and processed as

unbounded data causing generation of infinitely many symbolic

states. Yet, symbolic exploration with string data is important,

a large class of crashes in software is caused by buffer- and

heap-overflows when programs operate on string data.

We define a heuristic that leverages string length estimation

and approximation of standard string manipulation functions to

help concolic execution in generating states with realistic string
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data while reducing the risk of path explosion. The intuition

behind our heuristic comes from the following observations:

there are many concrete strings encoded in the program

code and thus many string length bounds can be obtained

based on operations between symbolic and concrete strings.

Moreover, there are practical limitations on the size of strings

such as function stack frame size and input file layout that

provide estimates of string lengths. Finally, semantics of several

standard string manipulation functions can be abstracted to the

level of groups of paths and inform symbolic execution.

For functions like strlen(sym) we bound concolic explo-

ration in the function according to the length estimate of a

symbolic string parameter sym that we gather dynamically from

a number of sources. A length estimate for strings allocated on

stack should not exceed a current stack frame size, while file

layout and object boundaries (boundaries between symbolic

and concrete input data) indicate upper bounds for lengths of

strings derived from input file data.

For other standard string functions that operate on pairs

of strings we approximate these functions by mapping their

few semantically different high-level paths to a multitude of

low-level paths. One example of groups of high-level paths for

a function stricmp(str1,str2) would be: (1) strings are

equal, (2) strings are equal length and differ in content, and (3)

strings differ in both length and content. These three groups

map to thousands of feasible low-level paths stemming from

two reasons. First, in LLVM based symbolic execution engine

– S2E in our case – the string function is converted to LLVM

bitcode that has larger number of branch instructions that in

source code or binary. For stricmp(str1,str2) function

the number of branches in LLVM bitcode is 13 versus 3 in

source code. Second, the number of paths is also controlled by

the number of loop iterations that depends on the length of the

input strings. We define the high-level semantics of the string

functions as a logical formula over function input, output and

properties of the input, such as length of a string argument.

To avoid path explosion, during concolic execution we

bound the exploration of these functions until paths from

all semantically different path groups are generated, while

controlling the number of generated paths. Consecutively,

we prioritize groups of paths and select single paths from

each group for further concolic exploration. For instance, for

stricmp() function we give a higher priority to the path

producing equal strings which covers the highly relevant case.

An experimentation with Orbital Viewer case study

(CVE-2010-0688) highlights the degree of reduction in path

numbers our technique achieves for concolically exploring a

standard string function. S2E with depth-first search configu-

ration would need to fork (213) ∗ 18 ≈ 150K paths to fully

concolically explore stricmp(str1,str2) function with one

symbolic string argument and one concrete string of length 18.

With our heuristic concolic executor only needs to explore

8K paths to populate elements for three high-level groups of

total 19 paths that we keep: one path (strings are equal), one

path (strings of equal length and differ in content), and 17 paths

(strings differ in both length and content). Each path in the

S2E core
system

WindowsMonitor

Standard plugins

FunctionMonitor

ModuleExecution
Detector*

CorePlugin

ExecutionTracker

DynamicCodeSelector

CrashDetector

TargetedSearcher

StringFuncInterceptor

ConditionSynthesizer

LoopExplorer

* - modified plugin
EdgeKiller

CFG
processing/
refinement

Custom plugins

Z3 
integration

IDA Pro

BAP

Fig. 6. Components of the Hercules toolset

third group corresponds to the strings being unequal in any of

the first 17 characters. We only need to keep 19 paths to cover

all of the three high level paths of the stricmp(str1,str2)

function, while the remaining low-level paths can be removed

from exploration. Overall, we generate few paths that cover all

high-level paths of a function in a balanced way and produce

realistic strings.

VI. IMPLEMENTATION

Our approach Hercules builds upon and extends the selective

symbolic execution technique S2E [1]. Figure 6 shows an

overall view of the components of our toolset. The main

components of our system are built as custom S2E plugins.

In addition, Hercules provides tools for control flow graph

processing outside S2E and data flow analysis built on BAP.

A. CFG refinement and path pruning functionality

Hercules implements analyses for post-processing the output

of IDA Pro toolset and obtaining the static and the dynamic

program structure information. We build CFG for each selected

module of the system using the static program structure

information (direct jumps, direct calls, jump tables) and the

dynamic information (indirect register jumps and calls). We

refine the CFG whenever the dynamic program structure is

updated, while exploring the program under test in Steps 2 and

3 of our approach.

A PathPruner module implements a pruning algorithm

similar to the algorithm for computing “chop” by Brumley

et al. [6]. PathPruner indicates every path that does not lead

to interesting targets in a module dependency chain. In the

crashing module, this tool will prune the paths that do not

reach the crash location. The output of the tool will be used

as the input of a plugin EdgeKiller that will kill a S2E state

in runtime if it executes an undesirable path.

B. Extensions of the S2E core

STP, the SMT solver in S2E, does not compute

unsat_cores. To get the unsat_core of a symbolic expres-

sion we integrate Z3 with S2E and pass symbolic constraints

between them in SMT2 format. Our framework augments S2E
to output symbolic formulae in SMT2 format and implements

a wrapper function to invoke Z3 solver from S2E.
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Another S2E core update takes snapshots of S2E states

in the targeted search. We make snapshots of symbolic

states at each branch location during concolic execution to

enable backtracking of concolic executor. This functionality

is implemented on top of cloning functionality of KLEE used

by S2E and our version supports state cloning at an arbitrary

execution point.

C. Analysis and search plugins

An ExecutionTracker plugin outputs important runtime

information. It handles signals emitted by S2E core plugin

when it executes an instruction or a basic block. In addition, it

detects the Process ID of the program under analysis to keep

track of the information it produces and excludes information

produced by other programs that use shared libraries.

A DynamicCodeSelector plugin enables flexible runtime

selection of modules executed concolically (with forking

enabled). The original S2E CodeSelector plugin is less flexible

and only supports static configuration of a list of modules in

which S2E selectively enables forking. Our TargetedSearcher
plugin heavily relies on DynamicCodeSelector for dynami-

cally switching different search stages each having different

configurations of forking-enabled modules.

To synthesize crash conditions for loop-controlled crash

instructions, we have developed three components. First,

ConditionSynthesizer is built as S2E plugin. It outputs runtime

values of all registers and updated variables at each iteration

inside the controlling loop. Second, a light-weight data flow

analysis is built on Binary Analysis Platform (BAP) [7]. Its

output supports user in selecting registers/variables having

relationship with a number of loop iterations. Third, a tool to

interface with the R statistical package to invoke its regression

models and infer function on dependent registers/variables and

the number of loop iterations [8]. Hercules infers functions

for simple and nested loops and covers three function forms –

linear, polynomial, and exponential – by using simple linear and

multiple linear regression models with logarithm and variable

substitution transformations.

StringFunctionInterceptor controls the exploration inside

string functions. It intercepts every call to the list of standard

string library functions such as strlen, strcpy, strcmp,

stricmp, strcat, strchr and strstr using handling

signals emitted by the FunctionMonitor plugin of S2E
(onFunctionCall and onFunctionRet signals). For each of

the functions we implement a special structure to define groups

of semantically distinct high-level paths (Section V-B). Each

group is defined as a logical expression over function input,

lengths of manipulated strings and function output. Finally, the

module dynamically extracts the stack frame size of the caller

to estimate string length bounds.

A TargetedSearcher plugin is a combination of the three

searchers (1) PathReplaySearcher, (2) SymbolicSummarization
and (3) EntryPointTargetedSearcher. Each searcher implements

the dedicated phases of the targeted search algorithm defined

in Section IV. The plugin switches between the searchers in

the process of concolic execution using several signals emitted

by the S2E Core plugin (onStateFork, onStateSwitch,

onExecuteInstruction) and signals from our cus-

tom plugins. In particular, onStringFunctionStart and

onStringFunctionEnd signals generated by the StringFunc-
tionInterceptor plugin are used for state grouping and prior-

itization for string manipulation functions. TargetedSearcher
populates the groups of states defined for each string function,

prioritizes these states and removes redundant ones.

A CrashDetector module detects application crash by

tracking Windows error reporting service invocation and calls

S2E API to solve path constraint and generate crashing input.

VII. EXPERIMENTAL EVALUATION

We evaluated our approach experimentally on real-world

application binaries. In this section we present the results

of the evaluation that demonstrate that Hercules successfully

reproduced six distinct crashes in five applications: Adobe

Reader (AR), Windows Media Player (WMP), Real Player (RP),

Orbital Viewer (OV) and Music Animation Machine (MAM)

Player. Table I summarizes the results for the effectiveness

of our approach as compared to the original S2E technique

and widely used industrial black-box fuzzing tool PeachFuzzer
(http://peachfuzzer.com). Hercules generated test inputs and

reproduced all six crashes, whereas baseline techniques failed

or took considerably more time to succeed.

A. Experimental setup

We conducted all of the experiments on a computer with a 3.4

GHz Intel Core i7-2600 CPU and 8 GB of RAM. The host OS is

Ubuntu 12.04 64-bit. The guest OS are Windows 7 Enterprise

32-bit SP1 and Windows XP 32-bit SP3. Our approach is

implemented on S2E version from May 2, 2014 obtained at

https://github.com/dslab-epfl/s2e. We used freeware IDA Pro
5.0 to disassemble binaries. In Table I, case studies marked

with (*) have been tested on both Windows XP and Windows 7.

The case studies cover vulnerabilities of the four prevalent

types (buffer overflow, integer overflow, memory access vi-

olation and division-by-zero) from http://cve.mitre.org/ and

operate on five distinct structured file formats. For the OV

case study we used a developer test suite obtained at http:

//www.orbitals.com/orb/ov.htm. For the Adobe Reader case

study, we used Microsoft Word 2010 to create pdf files with

embedded fonts. For the other four case studies, we obtained

test suites on the Internet from a random sample of benign

files of an appropriate format. Table I highlights the test suite

composition with numbers of benign files and their variation

in size. We enabled forking in a subset of modules indicated

by the crash reports as shown in Table I.

The toolset was configured for a timeout after twelve hours

of exploration and run without parallelization of the execution

process. For Hercules, we have fixed a loop bound of three

iterations and state timeout of 30 seconds to prevent the

exploration from “drifting” (Section III).

Table I shows execution times for the CFG construction

(Step 1), concolic (Step 2) and the targeted (Step 3) exploration

by Hercules as per Figure 1 (correspondingly marked 1 , 2 , 3
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TABLE I
EXPERIMENTAL SETUP AND RESULTS

Vulnerability CVE-2014-2671 CVE-2010-0718 CVE-2010-0688 CVE-2011-0502 CVE-2010-2204 CVE-2010-3000

Application WMP v9.0 WMP v9.0 OV v1.04 MAM v0.35 AR v9.2 RP SP 1.0
Selected / total modules 4 / 84 3 / 86 2 / 49 1 / 51 2/78 2/129
Size of crash. module 1.22 MB 1.22 MB 538 KB 368 KB 2.32 MB 60 KB
Test suite – No. of files 10 (2–137 KB) 15 (2–54 KB) 10 (3–5 KB) 10 (2–5 KB) 5 (55–307 KB) 6 (87–654 KB)

S2E (Random search) NO (>12 hr) NO (>12 hr) NO (>12 hr) YES (2 min) NO (>12 hr) NO (>12 hr)
S2E (DFS search) NO (>12 hr) NO (>12 hr) NO (out of mem.) NO (>12 hr) NO (>12 hr) NO (>12 hr)
PeachFuzzer NO (>24 hr) NO (>24 hr) YES (10 hr) YES (10 min) NO (>24 hr) NO (>24 hr)

Hercules 1 + 2 5 min + 45 min 5 min + 1 hr 30 min 2 min + 2 hr 1 min + ∼0 sec 5 min + 2 hr 5 min + 2 hr

Hercules 3 YES (15 min) YES (60 min) YES (40 min) YES (30 sec)* YES (60 min)* YES (45 min)

in the table). For Step 1, our automated scripts construct CFG

from the output of IDA Pro within few minutes. We used a

practical time limit of two hours for exploration in Step 2.

For the five case studies (except CVE-2011-0502), Hercules
(Step 2) explored, resolved dynamic information and reached

a crashing module within two hours, while the case study on

MAM (CVE-2011-0502) did not require exploration phase

to reach the crashing module. Finally, for all the case studies

targeted search (Step 3) reproduced the crashes within an hour.

B. Reproducing crashes

Our approach reached and reproduced crashes

CVE-2014-2671 and CVE-2010-0718 in Windows Media

Player (Quartz library). CVE-2014-2671 is a vulnerability in

Windows Media Player version 9. Attackers can exploit this

vulnerability to cause a denial of service via a crafted .wav

file. CVE-2010-0718 is a buffer overflow vulnerability in

Windows Media Player version 9. It allows attackers to cause

a denial of service via a crafted .mpg or .mid file that triggers

a system crash due to a divide-by-zero exception. Hercules
successfully reproduced the two crashes using the targeted

search. In both cases, Hercules avoided state explosion by

bounding loop iterations, while no string function analysis

was required. Hercules reproduced CVE-2010-0718 using as

little as 1% of input data in symbolic form.

CVE-2010-0688 is a crucial stack-based overflow in Orbital

Viewer, a tool for visualization of atomic and molecular orbitals.

By using a crafted .orb or .ov file, attackers can trigger a

system crash in Memory Access Violation exception or execute

arbitrary code. The vulnerability comes from the code for

reading data from input file using a known vulnerable function

fscanf. OV does not correctly check the data size before

writing it into stack buffers. The crash happens when the

overwritten data section is accessed by OV after a series of

function calls, including calls to string manipulation functions.

Hercules successfully bridged the distance between the location

where crashing data is introduced and the crashing location

by leveraging our heuristic for exploring string functions

(Section V-B), and reproduced the crash.

CVE-2011-0502 is a vulnerability in MAM MIDI Player

that allows attackers to easily cause a denial of service via

a crafted .mid file that crashes the program with a null

pointer dereference. This is the most “simple” case study in

our experiments that Hercules reproduced within 30 seconds.

Furthermore, Hercules does not require loop bounding nor

string function analysis to reproduce the crash.

CVE-2010-2204 is an vulnerability in Adobe Reader 9.0–

9.3 that allows attackers to cause a denial of service or

execute arbitrary code. CVE-2010-3000 is an integer overflow

vulnerability in RealPlayer SP 1.0 that allows attackers to

execute arbitrary code. For both cases Hercules can reach

crash instructions by symbolically executing the programs with

benign inputs, however, the programs do not crash, because the

crash instructions are loop-controlled. With the loop-controlled

crash condition analysis (Section V-A) Hercules can identify

the loop and infer a relationship between crash instructions and

the controlling loops. As a result, Hercules can successfully

synthesize symbolic crash conditions on the number of loop

iterations and use them to reproduce both crashes.

C. Comparing with the baseline

We demonstrate the effectiveness of Hercules by comparing

it with the baseline S2E and black-box fuzzing tool PeachFuzzer
on the same six case studies. We have run S2E with the input

files that Hercules used to successfully reproduce the crashes,

while PeachFuzzer used all the files in each test suite.

The results shown in Table I demonstrate that S2E can

reproduce the “simple” crash (CVE-2011-0502) and fails to

reproduce the other ones. Non-directed search of the baseline

S2E prevents it from reaching relevant program locations in a

given time and state space constraints. When run with a depth

first search (DFS) exploration, S2E digs itself in a single path,

while for the OV case study (CVE-2010-0688) it gets path

explosion in string manipulation functions before reaching the

crash location.

We run PeachFuzzer in a fully automatic setting with

infinite iterations of random mutation strategy and without

user-provided data model (input grammar specification) for

up to 24 hours. PeachFuzzer took substantially more time

than Hercules to generate crashing inputs for two case studies.

Effectiveness of the fuzzing tool critically depends on the

results of manual analysis to provide it with a correct input

grammar specification and indicate input portions that can and

must be mutated, and portions that need to be preserved.

VIII. RELATED WORK

Recent research produced a rich body of work for intelligent

navigation of program space and assisting symbolic execution
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in reaching certain program locations [9]–[15]. A common

line in these approaches is to use distance metrics and anchor

points for driving symbolic execution.

Debugging approach ESD [9] and patch testing approach

KATCH [11] share the goal of our approach to systematically

direct symbolic exploration towards a specific program location.

Differently from our approach that works with binaries and

partially resolved system information, ESD and KATCH assume

availability of a program source code and thus have more

precise system information including inter-procedural CFG

to inform the techniques and apply data flow analysis. Both

approaches analyze data-flows to identify reaching definitions

responsible for taking critical control-dependent edges and steer

symbolic execution towards these intermediate goals using

proximity metric.

Approaches that work on program binaries focus on resolving

sufficient system information using static and dynamic analy-

ses [12], [16], [17]. Approach by Babić et al. uses static analysis

to guide automated dynamic test generation [16]. Dynamic

analysis resolves indirect jumps with seed tests, and the static

analysis helps symbolic execution directing exploration towards

vulnerabilities based on the shortest paths and loop pattern

heuristics. MACE by Cho et al. combines symbolic and concrete

execution to build and refine an abstract finite state model of the

system-environment interaction and use it to guide the program

exploration [12]. HI-CFG by Caselden et al. generates hybrid

information- and control-flow graph of a program to direct

stages of backwards symbolic execution. Analogously to these

approaches, Steps 1 and 2 of our approach resolve program

structure information and use it to inform symbolic execution.

Fuzzing techniques integrate and interleave with symbolic

and concolic approaches for synthesizing complex structured

program inputs [15], [18]–[20]. A notable example of white-box

fuzzing technique is SAGE [18]. It works on binaries and given

an initial test input concolically explores the application using

code-coverage maximizing heuristic. BuzzFuzz, an automated

source code level technique, uses dynamic taint tracing to

automatically locate regions of given seed input files that

influence values used at program attack points and infers

the type of the input based on the taint information [20].

Dowser uses taint analysis to identify program inputs that

influence memory accesses and uses concolic execution with

partially symbolic inputs for learning about pointer access

patterns [15]. Using this information, Dowser steers fuzzing

technique towards complex pointer calculations in the program.

Likewise, by leveraging benign input files for generating hybrid

symbolic inputs, our approach retains intrinsic input structure

helping to scale symbolic exploration.

The idea of summarizing functions or problematic behavior

in symbolic execution have been investigated earlier. Godefroid

proposed a compositional approach to capture and reuse

function summaries to scale dynamic symbolic execution [21].

Brumley et al. describe vulnerability signatures as weakest

preconditions [6]. Several approaches have explored similar

intuition for summarizing and reasoning about problematic

behavior in a backwards fashion to find program inputs that

trigger such behavior [13], [17], [22], [23].

A related line of research improves the scalability of

symbolic execution [2], [4], [14], [24]–[27]. Kuznetsov et al.

introduced dynamic state merging and query count estima-

tion [25]. By estimating the impact of symbolic variables on

solver queries their approach merges states balancing between

the number of generated states and the complexity of the queries

to the solver. Mayhem by Cha et al. combines online and offline

symbolic execution and models symbolic memory at the binary

level [24]. Built on Mayhem, Veritesting enhances dynamic

symbolic execution with static symbolic execution [26].

These approaches are orthogonal to our work and can be

integrated to enhance its scalability. Our approach deals with

high-level sources of scalability issues in symbolic execution

that are manifested in string manipulation functions. Prior

research has been addressing the issues of operating on string

data in dynamic analysis and symbolic execution [28]–[31].

Larson and Austin characterize and track bounds and null

termination of string variables for dynamically checking validity

of program inputs [28]. Xu et al. track the abstract length of

the input string prefixes and instrument the string library to

update abstract lengths in symbolic execution [29]. Bucur

et al. associate high-level execution paths of the program to

some low-level execution paths during symbolic execution of

python programs [31]. Our approach learns from these ideas

and extends them in a new context of analyzing real-world

application binaries. In our future work we plan to enhance

our technique by integrating string solvers that can be adapted

for working with program binaries [30].

IX. DISCUSSION

In this paper, we have presented the design and evaluation

of our Hercules approach for finding test inputs which can

reproduce a given crash. Our approach is based on symbolic

execution and its distinctive features include (i) working on

binaries without source code and encompassing techniques to

construct the control-flow graph directly from binaries in the

presence of register-indirect jump instructions, (ii) combining

taint tracking and symbolic execution to find which parts of

the input file must be kept symbolic, and (iii) search strategies

to direct a path towards the crashing location by analyzing why

the current path being traversed by the search cannot reach the

crash. Experiments on real-world application binaries such as

Windows Media Player and Adobe Reader, show the efficacy

of our approach in finding test inputs to reproduce a crash.
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